a2zpapers.com

Exam. Code : 206701 Subject Code : 4679

M.Sc. (Computer Science) $1^{\text {st }}$ Semester
 DISCRETE STRUCTURES
 Paper-MCS-104

Time Allowed-Three Hours] [Maximum Marks-100
Note:-Attempt FIVE questions in all, taking at least ONE question from each section. The fifth question may be attempted from any section. All questions carry equal marks.

SECTION-A

1. (a) Is the function $y=f(x)=3 x+2, x, y \in R$ onto ? Is it one-to-one ? What if $x, y \in Z$? Explain.
(b) Prove that $\mathrm{A} \times(\mathrm{B} \cap \mathrm{C})=(\mathrm{A} \times \mathrm{B}) \cap(\mathrm{A} \times \mathrm{C})$.
2. Define a relation R on the set of natural numbers : a $R b$ if and only if $|a-b|<3$. Is R reflexive? Is R symmetric ? Is R transitive ? Give reasons for your answers.

SECTION-B

3. (a) What is minimum spanning tree ? With the help of an example illustration, explain the basic concepts and terminology of minimum spanning tree.

a2zpapers.com

(b) Define planar graph and show that the following graphs are planar $[8+8]$
(i) Graph of order 5 and size 8
(ii) Graph of order 6 and size 12 .
4. (a) State the technique to determine whether a Hamiltonian cycle exists in a graph or not.
(b) Find the chromatic number of :
(i) a cycle
(ii) a complete graph $\left(\mathrm{K}_{n}\right)$
(iii) a bipartite graph $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$. SECTION-C
5. A shop window designer has 7 balloons, of which 1 is white, 2 are blue and 4 are red. She hangs these balloons in a line in the shop front. Find the number of arrangements she can make by using :
(a) all 7 balloons,
(b) exactly 6 balloons.
6. Solve the recurrence relation by substitution :

$$
\begin{gathered}
\mathrm{a}_{\mathrm{n}}=\mathrm{a}_{\mathrm{n}-1}+\mathrm{n} \times 3^{\mathrm{n}} \text { where } \mathrm{a}_{0}=1 . \\
\text { SECTION-D }
\end{gathered}
$$

7. (a) If A and B are ideals of a ring R, prove that the $\operatorname{sum} A+B=\{a+b \mid a \in A, b \in B\}$ is also an ideal of R .
(b) Prove that the intersection of any two subfields of a field F is also a subfield of F.
8. Define Boolean algebra. What are the application of Boolean algebra in logic circuits and switching functions ? Give examples.
2339(2119)/HH-6919
